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Abstract— In wireless ad hoc networks, autonomous nodes are
reluctant to forward others’ packets because of the nodes’ limited
energy. However, such selfishness and noncooperation deteriorate
both the system efficiency and nodes’ performances. Moreover,
the distributed nodes with only local information may not know
the cooperation point, even if they are willing to cooperate. Hence,
it is crucial to design a distributed mechanism for enforcing
and learning the cooperation among the greedy nodes in packet
forwarding. In this paper, we propose a self-learning repeated-
game framework to overcome the problem and achieve the
design goal. We employ self-transmission efficiency as the utility
function of individual autonomous node. The self transmission
efficiency is defined as the ratio of the power for self packet
transmission over the total power for self packet transmission
and packet forwarding. Then, we propose a framework to search
for good cooperation points and maintain the cooperation among
selfish nodes. The framework has two steps: First, an adaptive
repeated game scheme is designed to ensure the cooperation
among nodes for the current cooperative packet forwarding
probabilities. Second, self-learning algorithms are employed to
find the better cooperation probabilities that are feasible and
benefit all nodes. We propose three learning schemes for different
information structures, namely, learning with perfect observ-
ability, learning through flooding, and learning through utility
prediction. Starting from noncooperation, the above two steps
are employed iteratively, so that better cooperating points can be
achieved and maintained in each iteration. From the simulations,
the proposed framework is able to enforce cooperation among
distributed selfish nodes and the proposed learning schemes
achieve 70% to 98% performance efficiency compared to that
of the optimal solution.

I. I NTRODUCTION

Some wireless networks such as ad-hoc networks consist
of autonomous nodes without centralized control. In such
autonomous networks, the nodes may not be willing to fully
cooperate and accomplish the network task. Specifically for
the packet forwarding problem, forwarding the others’ packets
consumes the node’s limited battery resource. Therefore, it
may not be of the node’s best interest to forward others’
arriving packets. However, rejection of forwarding others’
packets non-cooperatively will severely affect the network
functionality and impair the nodes’ own benefits. Hence, it is
crucial to design a mechanism to enforce cooperation among
greedy nodes. In addition, the randomly located nodes with
local information may not know how to cooperate, even if
they are willing to cooperate.

This work is partially supported by MURI AFOSR F496200210217.

The packet forwarding problem in ad hoc networks has been
extensively studied in the literature. The fact that nodes act
selfishly to optimize their own performances has motivated
many researchers to apply the game theory [1], [2] in solv-
ing this problem. Broadly speaking, the approaches used in
encouraging the packet forwarding task can be categorized
into two methods. The first type of methods makes use of
virtual payment. Virtual currency, pricing, and credit based
method [3], [4] fall into this first type. The second type of
approaches is related to personal and community enforce-
ment to maintain the long-term relationship among nodes.
Cooperation is sustained because defection against one node
causes personal retaliation or sanction by others. This second
approach includes the following works. Marti et al. [5] propose
mechanism calledwatchdogandpathraterto identify the mis-
behaving nodes and deflect the traffic around them. Buchegger
et al. [6] define protocols based on reputation system. Altman
et al. [7] consider a punishment policy to show cooperation
among participating nodes. In [8], Han et al. propose learning
repeated game approaches to enforce cooperation and obtain
better cooperation solutions. Some other works using game
theory in solving communication problems can be found in
[9], [10], and [11].

Since in some wireless networks, it is difficult to imple-
ment the virtual payment system because of the practical
implementation challenges such as enormous signaling. In this
paper, we concentrate on the second type of approaches and
design a mechanism such that cooperation can be enforced in
a distributed way. In addition, unlike the previous works which
assume the nodes know the cooperation points or other nodes’
behaviors, we argue that randomly deployed nodes with local
information may not know how to cooperate even if they are
willing to do so. Motivated by these facts, we propose a self-
learning repeated-game framework for cooperation enforcing
and learning.

We define the self-transmission as the transmission of a
user’s own packets. We quantify the node’s utility as its self-
transmission efficiency, which is defined as the ratio of the
power for successful self transmission over the total power
used for self transmission and packet forwarding. The goal
of the node is to maximize the long-term average efficiency.
Using this utility function, a distributed self-learning repeated-
game framework is proposed to ensure cooperation among
autonomous nodes. The framework consists of two steps: First,
the repeated game enforces cooperation in packet forwarding.
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Fig. 1. Illustration of time-slotted transmission to two alternative stages

This first step ensures that any cooperation equilibrium that
is more efficient than the Nash Equilibrium (NE) of the
one stage game can be sustained. The repeated game allows
nodes to consider the history of actions/reactions of their
opponents in making the decision. The cooperation can be
enforced/sustained using the repeated game, since any devia-
tion causes the punishment from other nodes in the future.
The second step utilizes the learning algorithm to achieve
the desired efficient cooperation equilibrium. We propose
three learning algorithms for different information structures,
namely, learning with perfect observability, learning through
flooding, and learning through utility prediction. Starting from
the non-cooperation point, the two proposed steps are applied
iteratively. A better cooperation is discovered and maintained
in each iteration, until no more efficient cooperation point
can be achieved. From the simulation results, our proposed
framework is able to enforce cooperation among selfish nodes.
Moreover, compared to the optimal solution obtained by
a centralized system with global information, our proposed
learning algorithms achieve similar performances in the sym-
metric network. Depending on learning algorithms and the
information structures, our proposed schemes achieve near-
optimal solution in the random network.

This paper is organized as follows: In Section II, we give
the system model and explain the design challenge. In Section
III, we propose and analyze the repeated-game framework for
packet forwarding under different information structures. In
Section IV, we construct self-learning algorithms correspond-
ing to different information structures in details. In Section V,
we evaluate the performances of our proposed scheme using
extensive simulations. Finally, the conclusions are drawn in
Section VI.

II. SYSTEM MODEL AND DESIGN CHALLENGE

We consider a network withN nodes. Each node is battery-
powered and has transmit power constraint. This implies that
only nodes within the transmission range are neighbors. The
packet delivery typically requires more than one hop. In each
hop, we assume transmission occurs in a time-slotted manner
as illustrated in Figure 1. The source, the relays (intermediate
nodes), and the destination constitute an active route. We
assume an end-to-end mechanism that enables a source node to
know if the packet is delivered successfully. The source node
can observe whether there is a packet drop in one particular
active path. However, the source node may not know where
the packet is dropped. Finally, we assume that routing decision
has already been done before optimizing the packet forwarding
probabilities1.

1We note that it is always possible for nodes to do manipulation in the
routing layer. However, it is beyond the scope of this paper. For more
information, please refer to [16]

Let’s denote the set of sources and destinations as{Si,
Di}, for i = 1, 2, · · · ,M , whereM represents the number
of source-destination pairs that are active in the network.
Suppose the shortest path for each source-destination pair
has been discovered. Let’s denote the route/path asRi =
(Si, f

1
Ri

, f2
Ri

, · · · , fn
Ri

, Di), whereSi denotes the source node,
Di denotes the destination node, and{f1

Ri
, f2

Ri
, · · · , fn

Ri
} is

the set of intermediate/relay nodes, thus, there aren + 1 hops
from source node to the destination node. LetV = {Ri : i =
1, · · · ,M} be the set of routes corresponding to all source-
destination pairs. Let’s denote further the set of routes where
nodej is the source asV s

j = {Ri : S(Ri) = j, i = 1 . . .M},
where S(Ri) represents the source of routeRi. The power
expended in nodei for transmitting its own packet is

P (i)
s =

∑

r∈V s
i

µS(r) ·K · d(S(r), n(S(r), r))γ , (1)

whereµS(r) is the transmission rate of source nodeS(r), K
is the transmission constant,d(i, j) is the distance between
node i and nodej, n(i, r) denotes the neighbor of nodei
on route r, and γ is the transmission path-loss coefficient.
For the link from nodei to its next hopn(i, r) on router,
K ·d(i, n(i, r))γ describes the reliable successful transmission
power per bit transmission. We note that equation (1) can
also be interpreted as the average signal power required for
successful transmission of certain rateµS(r). This implies that
the transmission failure due to the channel fading has been
taken into account by the transmission constantK.

Let αi for i = 1, · · · , N be the packet forwarding proba-
bility for node i. Here, we use the same packet forwarding
probability for every source-destination pairs because of the
following reasons. First, based on the greedy assumption of
the nodes, there is no reason for one particular node to
forward some packets on some routes and reject forwarding
other packets on other routes. Second, the use of different
packet forwarding probability on different routes will only
complicate the deviation detection of a node and it will not
change the optimization framework proposed in this paper.
So in our first step to analyze the problem, we assume the
same forwarding probability on every route. In the future work,
we are also exploring the case where the nodes use different
packet forwarding probability for different routes.

Clearly, probability of successful transmission from node
i to its destination depends on the forwarding probabilities
employed in the intermediate nodes and it can be represented
as

P i
Tx,r =

∏

j∈(r\{S(r)=i,D(r)})
αj , (2)

where D(r) is the destination of routei and (r \ {S(r) =
i,D(r)}) is the set of nodes on router excluding the source
and destination. Let’s define thegood powerconsumed in
transmission nodei, P

(i)
s,good as the product of the power used

for transmitting nodei’s own packet and the probability of
successful transmission from nodei to its destination,

P
(i)
s,good =

∑

r∈V s
i

µS(r) ·K · d(S(r), n(S(r), r))γP i
Tx,r. (3)
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Moreover, let the set of routes where nodej is the forward-
ing node beWj . The power used to forward others’ packets
is given by

P
(i)
f = αi ·K ·

∑

r∈Wi

d(i, n(i, r))γµS(r)P
i
F,r, (4)

whereP i
F,r is the probability that nodei receives the packet

to forward in router, and
∑

r∈Wi
µS(r) P i

F,r is the total rate
that nodei receives for packet forwarding. The probability that
nodei receives the forward packet in router is represented as

P i
F,r =

∏

j∈{f1
r ,f2

r ,··· ,fm−1
r }

αj , (5)

where r = {S(r), f1
r , · · · , fm−1

r , fm
r = i, · · · , fn

r , D(r)} is
the n + 1 hops route from sourceS(r) to destinationD(r),
and themth forwarding nodefm

r is nodei. P i
F,r depends on

the packet forwarding probabilities of the nodes on the route
r before nodei.

We refer to the task of transmitting the node own infor-
mation as self-transmission and the task of relaying others’
packets as packet forwarding. We focus on maximizing the
self-transmission efficiency, which is defined as the ratio of
successful self-transmission power (good power) over the
total power used for self-transmission and packet forwarding.
Therefore, the stage utility function for nodei can be repre-
sented as

U (i)(αi, α−i) =
P

(i)
s,good

P
(i)
s + P

(i)
f

. (6)

where αi is node i’s packet forwarding probability,α−i =
(α1, · · · , αi−1, αi+1, · · · , αN )T are the other nodes’ forward-
ing probability. Putting (1), (3) and (4) into (6), we obtain
(7). Since the power for successful self-transmission depends
on the packet forwarding used by other nodes, the self-
transmission efficiency captures the trade-off between the
power used for packet transmission of its own information
and packet forwarding for the other nodes.

The problem in packet forwarding arises because the au-
tonomous nodes such as in ad-hoc networks have their own
authorities to decide whether to forward the incoming packets.
Under this scenario, it is very natural to assume that each
node selfishly optimizes its own utility function. In parallel to
(7), nodei selectsαi in order to maximize the transmission
efficiencyU (i)(αi, α−i). This implies that nodei will selfishly
minimize P

(i)
f , the portion of energy used to forward others’

packets. In the game theory literature [1], [2], Nash Equilib-
rium (NE) is a well-known concept, which states that in the
equilibrium every node selects the best response strategy to the
other nodes’ strategies. The formal definition of NE is given
as follow

Definition 1: Define feasible rangeΩ as [0, 1]. Nash Equi-
librium [α∗1, · · · , α∗N ]T is defined as:

U (i)(α∗i , α
∗
−i) ≥ U (i)(αi, α

∗
−i), ∀i, ∀αi ∈ Ω, (8)

i.e., given that all nodes play NE, no node can improve
its utility by unilaterally changing its own packet forward
probability. Hereα∗−i = (α∗1, · · · , α∗i−1, α

∗
i+1, · · · , α∗N )T .

Unfortunately, the NE for the packet forwarding game de-
scribed in (7) isα∗i = 0, ∀i. This can be verified by finding the
forwarding probabilityαi ∈ [0, 1] such thatU (i) is unilaterally
maximized. To maximize the transmission efficiency of node
i, the node can only make the forwarding energyP

(i)
f as

small as possible. This is equivalent to settingαi as small
as possible, since the successful probability of its own packet
transmission in (2) depends only on the other nodes’ willing-
ness to forward the packets. By greedily dropping its packet
forwarding probability, nodei reduces its total transmission
power used for forwarding others’ packets, therefore, increases
its instantaneous efficiency. However, if all nodes play the
same strategy, this causes zero efficiency in all nodes, i.e.,
U (i)(α∗1 . . . α∗N ) = 0, ∀i. As the result, the network breaks
down. Hence, playing NE is inefficient not only from the
network point of view but also for the individual’s own benefit.
It is very important to emphasize that the inefficiency of NE is
independent to the utility function in (7). This inefficiency is
merely the result of greedy optimization unilaterally done by
each of the nodes. In the next two sections, we propose a self-
learning repeated-game framework and show how cooperation
can be enforced using our proposed scheme.

III. R EPEATED-GAME FRAMEWORK AND PUNISHMENT

ANALYSIS

As demonstrated in Section II, the packet forwarding game
hasα∗i = 0, ∀i as its unique Nash equilibrium if the game is
only played once. This implies that all nodes in the network
won’t be cooperating in forwarding the packets. In practice,
nodes typically participate in the packet forwarding game for
a certain duration of time, and this ismore suitablymodelled
as a repeated game (a game that is played in multiple times).
If the game never ends, it is called infinite repeated game
which we will use in this paper. In fact, the repeated game
may not be necessarily infinite. The important point is that
the nodes/players do not know when the game ends. In this
sense, the properties of the infinitely repeated game can still
be valid. In this paper, we employ the normalized average
discounted utility with discounting factorδ given by:

Ū (i)
∞ = lim

t′→∞
Ū

(i)
t′ = (1− δ)

∞∑
t=1

δ(t−1)U (i)(~α(t)), (9)

where~α(t) = (α1, . . . , αN )T , U (i)(~α(t)) is the utility of node
i at each stage game (7) played at timet, and Ū

(i)
t′ is the

normalized average discounted utility from time1 to time t′.
Unlike the one-time game, the repeated game allows a strategy
to be contingent on the past moves and results in the reputation
and retribution effects, so that cooperation can be sustained
[2], [13], [14]. We also note that the utilities in (7) and (9)
are indeed heterogeneous in the sense that they carry the
information about the channel, routing, and node behaviors. In
other words, the utility functions in (7) and (9) reflect different
energy consumption according to different distance, rate, and
route between nodes.

A. Design of Punishment Scheme under Perfect Observability

In this subsection, we analyze a class of punishment policy
under the assumption of perfect observability. Perfect observ-
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U (i) =

∑
r∈V s

i
µS(r)d(S(r), n(S(r), r))γ

∏
j∈(r\{S(r)=i,D(r)}) αj∑

r∈V s
i

µS(r)d(S(r), n(S(r), r))γ + αi

∑
r∈Wi

d(i, n(i, r))γµS(r)

∏
j∈{f1

r ,··· ,fm−1
r } αj

. (7)

ability means that each node is able to observe actions taken
by other nodes along the history of the game. This implies that
node knows which node drops the packet and is aware of the
identity of other nodes. This condition allows every node to
detect any defection of other nodes and it also allows nodes to
know if any node does not follow the game rule. The perfect
observability is the ideal case and serves as the performance
upper bound. In the next subsection, this assumption is relaxed
to a more practical situation, where an individual node only
has limited local information.

Let’s denote the NE in one stage forwarding game as
~α∗ = (α∗1, · · · , α∗N )T , and the corresponding utility functions
as (v∗1 , · · · , v∗N )T = (U (1)(~α∗), · · · , U (N)(~α∗))T . We also
denote

U = {(v1, · · · , vN )| ∃~α ∈ ΩN (10)

s.t. (v1, · · · , vN ) = (U (1)(~α), · · · , U (N)(~α))},
V = convex hull of U, (11)

V† = {(v1, · · · , vN ) ∈ V| vi > v∗i , ∀i}. (12)

We note thatV consists of all feasible utilities, andV†

consists of feasible utilities that Pareto-dominate the one stage
NE, this set is also known as the individually rational utility
set [1], [2]. The Pareto-dominant utilities denote all utilities
that are strictly better than the one stage NE. From the game
theory literature [2], [13], [14], the existence of equilibria that
Pareto-dominate the one stage NE is given by the Folk theorem
[14].

Theorem 1 (Folk Theorem [14]):Assume that the dimen-
sionality ofV† equals toN . Then, for any(v1, · · · , vN ) in V†,
there existsδ ∈ (0, 1) such that for allδ ∈ (δ, 1), there exists
an equilibrium of the infinitely repeated game with discounted
factor δ in which playeri’s average utility isvi.

Before we give the application of Folk theorem in the
packet forwarding game, it is useful to recall the notion
of dependency graph. Given the routing algorithm and the
source-destination pairs, the dependency graph is the directed
graph that is constructed as follows. The number of nodes in
the dependency graph is the same as the number of nodes
in the network. When nodei sends packets to nodej via
nodesf1, · · · , fn, then there exist directed edges from node
i to nodesf1, · · · , fn. The resulting dependency graph is a
directed graph, which describes the node dependency in per-
forming the packet forwarding task. Let’s definedegin(i) and
degout(i) as the number of edges going into nodei and coming
out from nodei, respectively. Obviously,degin(i) indicates of
the number of nodes whose packets are forwarded by node
i and degout(i) is the number of nodes that help forward
node i’s packets. Using the notation of the corresponding
dependency graph, the application of Folk theorem in packet
forwarding game is stated as follow:

Theorem 2:(Existence of Pareto-dominant forwarding
equilibria under perfect observability)

Under the following conditions

1. the game is perfectly observable;
2. the corresponding dependency graph satisfies the

condition
degout(i) > 0, ∀i; (13)

3. V† has full dimensionality (V† has dimensionality
of N ). We note thatV† has dimensionality ofN
implies that the space formed by all points inV†

has the dimensionality ofN .

Then, for any(v1, · · · , vn) ∈ V†, there existsδ ∈ (0, 1),
such that for allδ ∈ (δ, 1), there exists an equilibrium of the
infinitely repeated game with nodei’s average utilityvi.

Proof: Let ~α = (α1, · · · , αN )T be the joint strategy
results in (U (1)(~α), · · · , U (N)(~α)). The full dimensionality
condition ensures the set

(
U (1)(~α), · · · , U (j−1)(~α), U (j)(~α)−

ε, U (j+1)(~α), · · · , U (N)(~α)
)

for any ε > 0, is in V†. Let
node i’s maximum utility bevi = max~α U (i)(~α), ∀i. This
maximum utility is obtained when all nodes try to maxi-
mize nodei’s utility. Let the cooperating utility bevi =
U (i)(~α) ∈ V†, ∀i. The cooperating utilities are obtained when
all nodes play the agreed packet forwarding probabilities. Let
the maximum utility nodei can get when it is punished be
vi = maxαi minα−i U (i)(~α). Let’s denote nodej’s utility
when punishing nodei as wi

j . We note that from (7), the
max-min utility vi coincides with the one stage NE. If there
exist ε and the punishment period for nodei, Ti, such that

vi

U (i) − ε
< (1 + Ti), (14)

then the following rules ensure any individually rational util-
ities can be enforced.

1) Condition I: All nodes play cooperation strategies
if there is no deviation in the last stages. After any
deviations go to Condition II (Suppose nodej deviates).

2) Condition II: Nodes that can punish the deviating node
(nodej) play the punishing strategies for the punishment
period. The rest of the nodes keep playing cooperating
strategies. If there is any deviation in Condition II, restart
Condition II and punish the deviating node. If any pun-
ishing node does not play punishment in the punishment
period, the other nodes will punish that particular node
during the punishment period. Otherwise, after the end
of the punishment period, go to Condition III.

3) Condition III: Play strategy that results in utility(
U (1), · · · , U (j−1), U (j) − ε, U (j+1), · · · , U (N)

)
. If

there is any deviation in Condition III, start Condition
II and punish the deviating node.

First, the cooperating strategy is the strategy that all nodes
agree upon. In contrast, the punishing nodei strategy, is
the strategy that results in max-min utility in nodei, vi =
maxαi minα−i U (i)(~α). In the sequel, we show that under the
proposition’s assumptions:
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• the average efficiency gained by the deviating node is
smaller than the cooperating efficiency,

• the average efficiency gained by the punishing node that
does not play the punishment strategy in the punishment
stage is worse than the efficiency gained by that node
when it conforms to the punishing strategy.

If node j deviates in Condition I and then conforms, it
receives at mostvj when it deviates,vj for Tj periods
when it is punished, and(U (j) − ε) after it conforms to the
cooperative strategy. The average discounted deviation utility
can be expressed as:

Û (j)
∞ = vj +

δ(1− δTj )
1− δ

vj +
δTj+1

1− δ
(U (j) − ε). (15)

Since if the node conforms throughout the game, it has the
average discounted utility of11−δ U (j). So the gain of deviation
is given by:

∆U (j) = Û (j)
∞ − 1

1− δ
U (j)

< vj +
δ(1− δTj )

1− δ
vj −

1− δTj+1

1− δ
(U (j) − ε). (16)

We note thatvj coincides with the one stage NE, which is

vj = 0, ∀j. As δ → 1, 1−δTj+1

1−δ tends to1 + Tj . Under the
condition of (14), the deviation gain in (16) will be strictly
less than zero. This indicates that the average cooperating
efficiency isstrictly larger than the deviation efficiency. Hence,
any rational node will not deviate from the cooperation point.

If the punished node still deviates in the punishment period,
the punishment period (Condition II) restarts and the punish-
ment duration experienced by the punished node is lengthened.
As the result, deviation in the punishment period postpones
the punished node from receiving the strictly better utility
(U (j) − ε) in Condition III. Hence, it is better not to deviate
in the punishment stage.

On the other hand, if punishing nodei does not play the
punishing strategy during the punishment of nodej, node i
receives at most

Û (i)
∞ = vi +

δ(1− δT )
1− δ

vi +
δT+1

1− δ
(U (i) − ε). (17)

However, if nodei conforms with the punishment strategy, it
will receive at least

Ũ (i)
∞ =

(1− δT )
1− δ

wj
i +

δT+1

1− δ
U (i). (18)

Herewj
i is the utility of nodei to punish nodej. Therefore,

nodei’s reward for carrying out the punishment is (18) minus
(17),

Ũ (i)
∞ − Û (i)

∞ =
(1− δT )

1− δ
(wj

i − δvi)− vi +
δT+1ε

1− δ
. (19)

Using vi = 0,∀i and let δ → 1, the expression (19) is
equivalent to

Ũ (i)
∞ − Û (i)

∞ = T · wj
i − vi +

ε

1− δ
. (20)

By selectingδ close to one, this expression can be always
larger than zero. As the result, the punishing node always
conforms to the punishment strategy in the punishment stage.

Fig. 2. Example of the punishment scheme under perfect observability

The same argument of no node deviating in Condition I
can be used to show that no nodes deviates in Condition III.
Therefore, we conclude that deviations in all Conditions are
not profitable.

The proof above is based on two conditions: First, the proof
assumes that there always exist nodes that can punish the devi-
ating nodes, this is guaranteed by the assumptiondegout(i) >
0 in the corresponding dependency graph. Secondly, nodes are
able to identify which node is defecting and which node does
not carry out the punishment. This is guaranteed by the perfect
observability assumption. The strategy of punishing those who
misbehave and those who do not punish the misbehaving nodes
can be an effective strategy to cope with the collusion attack.

Now let’s consider the following example to understand the
punishment behavior. We assumeµS(r) = 1, K = 1, and
d(i, j) = 1. The resulting utilities are shown in Figure 2. Each
node has the one stage utility as:

U (i) =
αmod(i−2,6)+1 + αmod(i,6)+1

2 + 2αi
. (21)

By selecting the discounted factor,δ = 0.9 and T = 2
appropriately, all nodes are better-off when they are cooper-
ating in packet forwarding by settingαi = 1, ∀i. If all nodes
conform to the cooperative strategies, the6-stage normalized
average discounted utilities defined in (9) are given byŪ

(i)
6 =

0.2343, ∀i. In Figure 2, we plot the utility functions and
forwarding probabilities of all nodes. The x-axis of the plot
denotes the round of game, the left y-axis denotes the value
of node’s utility, and the right y-axis denotes the value of
forwarding probability. The forwarding probability is denoted
by the squared plot and the utility function is denoted by the
plot with stars.

In Figure 2, we show that node1 is deviating in the second
round of the game by setting its forwarding probability to
zero. At this time, node 1’s utility changes from0.5 to 1 as
seen in the figure. As the consequence, node2 and node6
are punishing node1 at the followingT = 2 stages by setting
their forwarding probabilities to zeros. In the third round of
the game, node1 has to return to cooperation. Otherwise, the
punishment from others restarts and consequently the average
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discounted utility will be further lowered. After the punish-
ment, all nodes come back to the cooperative forwarding
probabilities (as shown in the figure). The resulting6-stage
normalized average utilities are as follows̄U (1)

6 = 0.2023,
Ū

(2)
6 = Ū

(6)
6 = 0.2887, Ū

(3)
6 = Ū

(5)
6 = 0.1958, and

Ū
(4)
6 = 0.2343. So node1 has less utility by deviation than

by cooperation. Moreover, if both node2 and node6 fail to
punish node1, they will be punished by other nodes during
the following T periods of game. The resulting normalized
average utilities arēU (1)

6 = 0.3485, Ū
(2)
6 = Ū

(6)
6 = 0.1425,

Ū
(3)
6 = Ū

(5)
6 = 0.3035, and Ū

(4)
6 = 0.165. Therefore, node2

and node6 will carry out the punishment, since otherwise
they will in turn be punished and have less utility. The
same argument can be used to prevent nodes deviating from
the punishment strategy. We note that in this example the
corresponding dependency graph hasdegin(i) = degout(i) =
2,∀i. Therefore, there are always punishing nodes available
whenever any node deviates.

Finally, we discuss the discounting factorδ which represents
the importance of the future. In the case where the discounting
factor is small, the future is less important. This will cause
the pathological situation where the instantaneous deviation
gain of the defecting node exceeds any future punishment
by the other nodes. Therefore, it is better-off for the node
to deviate rather than to cooperate and it becomes very hard
(if not impossible) to encourage all nodes to cooperate in
this scenario. We also note that the selfish nodes are better-
off to choose theδ approaching to one. Since if the node
choosesδ that closes to zero, this implies that the future is
not important to the node, the node will definitely ask other
nodes for transmitting his own packet at very beginning of
the game and stop forwarding others’ packets afterward. This
will invoke punishment from its neighboring nodes by not
forwarding that particular node’s packets. This implies that
that node will automatically be excluded from the network.
Therefore, it is better-off for nodes in the network to choose
δ approaching to one.

B. Design of Punishment Scheme under Imperfect Local Ob-
servability

We have shown that under the perfect observability assump-
tion, the packet forwarding game along with the punishment
scheme can achieve any Pareto-dominant efficiency. However,
the perfect observability may be difficult to implement in ad-
hoc networks, due to the enormous overheads and signaling.
Therefore, we try to relax the condition of the perfect ob-
servability in this subsection. There are many difficulties in
removing the perfect observability assumption. Suppose each
node observes only its own history of stage utility function.
In this situation, the node knows nothing about what has
been going on in the rest of the network. The node only
knows the deviation of nodes on which it relies on to do
packet forwarding. And it cannot detect the deviation in the
other part of the network, even though it can be the one that
can punish the deviating node. Therefore, it is impossible
to implement the Folk Theorem in this information limited
situation. Moreover, nodes may not know if the system is in

punishment stage or not. As soon as one of the nodes sees the
deviation, it starts the punishment period. This will quickly
start another punishment stage by other nodes, since the nodes
cannot differentiate if the change in stage efficiency is caused
by the punishment stage or the deviating node. As the result,
the defection spreads like an epidemic and cooperation in the
whole network breaks down. This is known as thecontagious
equilibrium [13]. Indeed, the only equilibrium in this situation
is the one stage NE.

The main reason of the contagious equilibrium is that all
nodes have theinconsistentbeliefs about the state of the
system, they do not know whether the system is currently
in the punishment stage, the deviation state, or the end of
punishment stage. Therefore, any mistake in invoking the
punishment stage can cause the contagious equilibrium. The
lack of the consistent knowledge of the system state can be
mitigated using communications between nodes. Suppose each
node observes only a subset of the other nodes’ behaviors.
The communication is introduced by assuming that each node
makes a public announcement about the behaviors of the nodes
it observes. This public announcement can be implemented by
having the nodes exchange the behaviors of nodes they observe
through broadcasting. The intersection of these announcements
can be utilized to identify the deviating node. At the end of
each stage game, the nodes report either no nodes deviate or
the identity of the deviating node. Since these announcements
can be exchanged in a relatively low frequency and only to the
related nodes, the communication overheads are limited. Under
this local observability assumption, the following theorem
inspired by the Folk Theorem for privately monitoring with
communication [15] is proposed

Theorem 3:SupposeV† hasN dimensionality (full dimen-
sionality), whereN is the number of nodes in the network.
If every nodei is monitored by at least two other nodes, this
implies the following:

1. If node i participates in the routes that have only2
hops, thendegin(i) ≥ 2 is sufficient.

2. If node i participates in the routes which one of
the routes has only2 hops, thendegin(i) ≥ 3 is
sufficient.

3. If node i participates in the routes which have more
than2 hops, thendegin(i) ≥ 4 is sufficient.

Also, there always exists a node that can punish the deviating
node, i.e.,

degout(i) > 0, ∀i. (22)
Moreover, the monitoring nodes can exchange the observa-
tions. Then, for everyv in the interior of V†, there exist
δ ∈ (0, 1), such that for allδ ∈ (δ, 1), v = (v1, · · · , vN ) is an
equilibrium of an infinitely repeated game in which nodei’s
average utility isvi.

Proof: Suppose there existε, δ and punishment period
Ti such that (14) holds and

maxi{Ti}−1∑
t=0

δt max
i
{max
(α,α′)

(
vi(α)− vi(α′)

)}

<

∞∑

t=maxi{Ti}
δtε, (23)
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then the following rules of the game (Condition I to III)
achieves the equilibrium whendegin(i) = 2, ∀i.

Condition I: If there is no announcement of the deviating
nodes

a. If the previous stage is in cooperating state, continue the
cooperating state.

b. If the nodes play the following strategy in the previous
stage

(
U (1), · · · , U (k−1), U (k) − ε, U (k+1), · · · , U (N)

)

for k ∈ {1, · · · , N}, continue the previous state.
c. If the previous stage is in punishing nodek state and the

punishment has not ended, then continue the punishing.
Otherwise, switch to strategy that results in

(
U (1), · · · , U (k−1), U (k) − ε, U (k+1), · · · , U (N)

)
.

Condition II:If nodej is incriminated by both of its monitors
j1 and j2

a. If the previous stage’s strategy is either in the
following states: punishing nodej, implementing(
U (1), · · · , U (j−1), U (j) − ε, U (j+1), · · · , U (N)

)
, imple-

menting
(
U (1), · · · , U (j) − ε, · · · , U (l) − ε, · · · , U (N)

)
,

for some l 6= j, or in implementing
(
U (1), · · · , U (l) +

ε, · · · , U (j) − ε, · · · , U (N)
)
, for somel 6= j, then start

the punishment stage for punishing nodej.
b. If the previous stage’s strategy is in punishing

node j1, then switch to the strategy that results in(
U (1), · · · , U (j2) +ε, · · · , U (j)−ε, · · · , U (N)

)
. The sim-

ilar argument is applied to increase nodej1’s utility by ε
when nodej2 is punished in the previous stage.

Condition III: If there is any inconsistent announcement
by node j1 and j2. We note that the inconsistent
announcement happens when there are at least two
announcements of the deviation node, but the devia-
tion nodes in the announcements are different.

a. If the previous state is punishing nodej1 or nodej2, then
restart the punishment stage.

b. Otherwise, implement
(
U (1), · · · , U (j1)− ε, · · · , U (j2)−

ε, · · · , U (N)
)
.

In the above rules, we consider three different conditions,
namely when no announcement of deviating node (Condition
I), when the announcements are consistent (Condition II), and
when the announcements are inconsistent (Condition III). Then
we discuss the different strategies for different states within
each Condition. We note that only the nodes whose packets are
forwarded by nodej have the potential ability of detecting the
deviation of nodej. The above game rule ensures that if every
nodes in the network are monitored by at least two other nodes
and there always exist nodes to punish the deviating node, then
any v ∈ V† can be realized.

If both the monitors (nodej1 and nodej2) of node j
incriminate nodej, then nodej is punished in the similar
way to the punishment in Theorem 1. The deviator (nodej)
is punished for a certain period of time if the previous state
is in one of the following states: punishing nodej state (this
implies that the punishment stage will be restarted), finished
punishing nodej state (i.e. in the state with utility function

as U (1), · · · , U (j−1), U (j) − ε, U (j+1), · · · , U (N)), after pe-
nalizing nodes that make inconsistent announcements (i.e. in
state with utilityU (1), · · · , U (k)−ε, · · · , U (l)−ε, · · · , U (N)),
where nodek andl are the nodes that previously make incon-
sistent announcements, or in state with utilityU (1), · · · , U (l)+
ε, · · · , U (k) − ε, · · · , U (N). In all these states, the deviator
(nodej) will be punished for a certain period of time (Con-
dition IIa). However, if the previous state is in punishing
node j1, then the system switches to strategy that results in
U (1), · · · , U (j2) + ε, · · · , U (j) − ε, · · · , U (N) (Condition IIb).
This strategy gives additional incentives (U (j2) + ε) for node
j2 to punish to nodej. Obviously, nodej1 has the incentive to
announce if nodej deviates, since this announcement will end
nodej1 punishment. Because of the possible early termination
of the punishment period, nodej1 also has the incentive
to wrongly incriminate nodej, this particular case will be
prevented by Condition IIIa. Condition IIb is also used to
avoid the situation where nodej2 lies on its announcement
even though it observes that nodej deviates. This condition
will become obvious as we discuss the Condition III.

Next, we consider the case where there are incompatible
announcements. We note that incompatible announcements
imply that there are two nodes or two groups of nodes
that make different announcements on the deviation. These
announcements can be in the forms of either nodej is
only incriminated by one of the nodes (a group of nodes)
or two different nodes are incriminated by two other nodes
(two other groups of nodes). When there are incompatible
announcements about nodej (Condition III) and the previous
state is not in punishing nodej1 or j2, the nodes that make
incompatible announcements will be penalized and they will
receive utility U (ji) − ε for i = 1, 2 (Condition IIIb). In the
case when nodej1 is being punished in the previous stage, the
Condition IIIa prevents nodej1 from falsely accusing nodej.
Condition IIIa and Condition IIIb are sufficient to avoid lying
in announcement. However, including Condition IIIa creates
the situation where nodej2 enjoy punishing nodej1. This
means that when nodej1 is being punished and in the case
nodej has really deviated, nodej2 has the incentive to lie in its
announcement and announces that no nodes is deviating. This
problem is solved by Condition IIb that gives additional reward
for nodej2 to tell the truth and punish nodej. Moreover (23)
implies that this additional reward for nodej2 outweighs the
benefit from punishing nodej1. (23) can be thought as the
incentives for the monitoring nodes to punish the deviating
node when the announcements are inconsistent.

Previous arguments ensure that if every nodes in the network
are monitored by at least two other nodes, then any feasible
v ∈ V† can be realized. Next, we analyze the three cases
listed in Theorem 3. In the first case, if all routes that nodei
participates have only2 hops, anddegin(i) ≥ 2, this implies
that every node can be perfectly monitored by two or more
nodes. It is obvious that the above game rules can be applied
directly. In the second case when nodei participates in routes
with one of the routes of exactly2 hops, anddegin(i) ≥ 3,
both the announcement from the source of the2-hop route
and the aggregate announcements from the sources of the rest
of the routes serve as the final announcements. We note that
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Fig. 3. Suppose the victim node,S, is in the edge of the network and every
transmission coming from nodeS should go through nodef . Suppose node
f deviates and blocks the announcement fromS. NodeS can increase the
transmission power to bypass nodef to broadcast the announcement.

the intersection of the aggregate announcements will do the
incrimination on a certain node. The node that does not tell the
truth can be determined by majority voting method. Finally,
for the case where nodei participates in the routes which have
more than2 hops anddegin(i) ≥ 4, the sources can form two
groups and use the previous game of rule. The lying node will
be detected using majority voting. In summary, any potential
deviation in the network satisfying the conditions of Theorem
3 can be detected. Moreover, the game rules guarantee that
any feasible rational utilities can be enforced.

We note that from the announcement forwarder perspec-
tive, it faces two scenarios, namely either the announcement
contains negative information about the forwarder itself or it
contains negative information about the other nodes. In the first
case, the forwarding node may not forward the announcement,
however, even though that node itself does not forward the
announcement, there is only a small probability that the
announcement does not go through the whole network as
illustrated in Figure 3. Moreover, the condition that every node
is monitored by at least2 nodes indicates that the illustrated
case is less probable. In the second case, the forwarding
nodes do not have any immediate gain for not forwarding the
announcement, i.e., the forwarder is indifferent of forwarding
the announcement. However, the forwarding nodes are better-
off to forward the truthful announcement in order to catch
and punish the deviating node. Otherwise, the forwarding
nodes may also become the victims of the deviation in the
future. Moreover, the announcement consumes much lower
energy compared to the packet transmission itself. Hence, by
indifferent we meant, each node is better off while making
a truthful announcement, which will consume just a small
portion of the energy transmission rather than a bigger loss
when it is deviated by the deviating node.

Based on different information structures, analyses in Sec-
tion III-A and Section III-B guarantee that any individually
rational utilities can be enforced under some conditions. How-
ever, the individual distributed nodes need to know how to
cooperate, i.e. what the good packet forwarding probabilities
are. In the next section, we describe the learning algorithms
to achieve better utilities.

IV. SELF-LEARNING ALGORITHMS

From Section III, any Pareto dominant solutions better
than one stage NE can be sustained. However, the analysis
does not explicitly determine which cooperation point to be

sustained. In fact, the system can be optimized to different
cooperating points, depending on the system designer choices.
For instance, the system can be designed to maximize the
weighted sum of the average infinitely repeated game’s utilities
as follow

Usys =
N∑

i=1

w(i)U
(i)

∞ , where
N∑

i=1

w(i) = 1. (24)

In particular, whenw(i) = 1
N ,∀i, maximize the average utility

per nodes is usually employed in network optimization

Usys =
1
N

N∑

i=1

U
(i)

∞ . (25)

We use (25) as an example, but we emphasize that any
system objective function can be incorporated into the learning
algorithm in a similar way. From individual point of view, as
long as the cooperation can generate a better utility than the
non-cooperation, the autonomous node will participate. More-
over, any optimization other than the system optimization can
be monitored by the other nodes as deviation. Consequently,
the punishment can be explored in the future.

The basic idea of the learning algorithm is to search itera-
tively the good cooperating forwarding probability. Similar to
the punishment design, we consider the learning schemes for
different information availability, namely, the perfect observ-
ability and the local observability. In parallel with the system
model in Section II, we consider the time-slotted transmis-
sion that interleaves the learning mode and the cooperation
maintenance mode as shown in Figure 1. In the learning
mode, the nodes search for better cooperating points. In the
cooperation maintenance mode, nodes monitor the actions of
other nodes and apply punishment if there is any deviation.
In the learning mode, the nodes have no incentives to deviate
since they do not know if they can get benefits. So they do
not want to miss the chance of obtaining the better utilities
in the learning mode. It is also worth mentioning that if a
node deviates just before a learning period, it will still be
punished in the following cooperation maintenance period. So
the infinite repeated game assumption is still valid in this time
slotted transmission system.

A. Self-learning under the perfect observability

Under the perfect observability information structure, every
node is able to detect the deviation of any defecting node, and
observe which nodes help forwarding others’ packets. This fact
implies that every node is able to perfectly predict the average
efficiencies of other nodes and optimize the cooperating point
based on the system criterion (25). The basic idea of the
learning algorithm is to use the steepest-descent-like iterations.
All nodes predict the average efficiencies of the others and
the corresponding gradients. The detailed algorithm is listed
as in Table I. Learning with perfect observability assumes
the perfect knowledge of utility functions of all nodes in the
network, and represents the best solution that any learning
algorithm can achieve.



9

TABLE I

SELF-LEARNING REPEATED-GAME ALGORITHM UNDER PERFECT

OBSERVABILITY

For nodei: Given ~α−i, small incrementβ,
and minimum forwarding probabilityαmin

Iteration: t = 1, 2, · · ·
Calculate∇Usys(~α(t− 1))
Calculate~α(t) = ~α(t− 1)− β∇Usys(~α(t− 1))
Selectαi(t) = min {max {[~α(t)]i, αmin}, 1}

B. Self-learning under the local observability

In this subsection, we focus on the learning algorithm with
the information structure available under local observability.
Under this condition, the nodes may not have the complete
information about the exact utility of others. Based on this
information structure, we develop two learning algorithms.
The first algorithm is calledlearning through flooding. The
second algorithm makes prediction of the other nodes’ stage
efficiency based on the flows that go through the predicting
node. We called the second algorithm aslearning through
utility prediction.

1) Learning through Flooding:The basic idea of the learn-
ing algorithm is as follow. Since the only information the
node can observe is the effect of changing its forwarding
probability onto its own utility function. The best way for the
nodes to learn the packet forwarding probability is to gradually
increase the probability and monitor if the utility function be-
comes better. If the utility becomes better, the new forwarding
probability will be employed. Otherwise, the old forwarding
probability will be kept. The algorithm lets all nodes change
their packet forwarding probabilities simultaneously. This can
be done by flooding the instruction for changing the packet
forwarding probability. After changing the packet forwarding
probability, the effect propagates throughout the network. All
nodes wait for a period of time until the network becomes
stable. At the end of this period, the nodes obtain their new
utilities. If the utilities are better than the original ones, then
the new packet forwarding probabilities are employed. Other-
wise, the old ones are kept. We note that the packet forwarding
probability increment is proportional to the increase in the
utility function: the nodes with higher increment in their
utility functions increase their forwarding probability more
compared to the nodes with lower utility increment. Here, we
introduce the normalization factorU (i),t−1(αt−1

i ) (the utility
before changing the forwarding probability) in order to keep
the updates in forwarding probability bounded. The forwarding
probability increment depends on small increment constantη
and the normalization factor. The above process is performed
until no improvement can be made. The detailed algorithm is
shown in Table II.

We note that the time until the network is stable is defined
as the time until all of the nodes do not observe fluctuations
in their utility functions as the result of flooding/changing
forwarding probabilities in the previous round. In practice,
this waiting time can be either predefined or adjusted online as
follow: Depending on the size of the network, a waiting period

TABLE II

SELF-LEARNING REPEATED-GAME ALGORITHM (FLOODING)

Initialization: t = 0
αt

i = α0, ∀i. Choose small incrementξ, η.
Iteration: t = 1, 2, · · ·

CalculateU (i),t−1(αt−1
i ) andU (i),t−1(αt−1

i + ξ),
Calculate∆U (i),t−1 = U (i),t−1(αt−1

i + ξ)
−U (i),t−1(αt−1

i ),
For eachi such that∆U (i),t−1 > 0,

αt
i = αt−1

i + η ∆U(i),t−1

U(i),t−1(αt−1
i )

,

αt
i = max(min(αt

i, 1), αmin).
End when: No improvement.
Keep monitoring the deviation
Start punishment scheme if there is a deviation

will be set in each node. If the node observes that its utility
function fluctuates more than the preset period of time, that
node can propose to prolong the preset time in the next round
of flooding, otherwise the old preset waiting time is employed.
When a node observes requests to prolong the waiting time, it
sets the maximum of the broadcasted waiting times and its own
waiting time as the current waiting time. In this way, nodes
will wait until the effect of changing forwarding probability
propagates to the whole network before the next flooding
(changing of forwarding probability) happens. The maximum
delay can also be set to keep the delay time bounded.

2) Learning with utility prediction: In this second ap-
proach, we observe that some of the routing information can
be used to learn the system optimal solution (25). We assume
that the routing decision has been made before performing the
packet forwarding task. For instance, in the route discovery
using Dynamic Source Routing (DSR) [12] algorithm without
route caching, the entire selected route is included in the
packet header in the packet transmission. The intermediate
nodes use the route (in packet header) to determine to whom
the packet will be forwarded. Therefore, it is clear that the
transmitting node knows where the packet goes through, the
relaying nodes know where the packet comes from and heads
to, and the receiving node knows where the packet comes
from. The nodes use this information to predict the utilities of
others’ nodes. We note that because not all nodes are involved
in all of the flows in the network, the utility prediction may
not be perfectly accurate. But from the simulation results,
the performance degradation is minimal since only the nearby
nodes matter.

The utility prediction is illustrated using an example shown
in Figure 4, assumingµS(r) = 1, K = 1, andd(i, j) = 1. We

denoteU (j)
i as the utility of nodej predicted by nodei. From

the figure, node1 receives flows from node3, and node4 and
node4 receives flows from node1 and node2. It is obvious
that the flow from node2 to node4 is not perceived by node
1. Hence, the utilities of node2 and node3 predicted by node
1 are not the accurate ones. Similarly, the flow from node3
to node1 is not perceived by node4. Therefore,U (2)

4 and
U

(3)
4 are not accurate. The accuracy of the prediction depends
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Fig. 4. Example for learning with utility prediction

on the flows. If all flows involving nodei pass through node
j then U

(i)
j will be accurate and vice versa as illustrated in

Figure 4. However, as we show by simulations the inaccuracy
in the prediction does not affect the results of optimization too
much.

Since the objective of the optimization is to achieve the
system optimal solution (25), the best nodei can do is to find
the solution that minimizes the total average predicted utility
function, which is

min 1
N

∑N
j=1 U

(j)
i (α̂(1)

i , · · · , α̂
(N)
i ), (26)

s.t. αmin ≤ α̂
(j)
i ≤ 1,∀j,

where α̂
(j)
i is the packet forwarding probability that node

j should employ as predicted by nodei. The detailed of
the algorithm is presented as in Table III. The algorithm in
Table III imitates the steepest-descent algorithm based on
the predicted utility, where every node finds the gradient
of the predicted utility and optimizes the predicted system
utility (26). After obtaining {α̂(i)}, each node sets its own
packet forwarding probability asαt

i = α̂
(i)
i . We note that the

optimization problem (26) can be done in a distributed manner,
since the optimization does not require the global knowledge
of the utility function. Each node does the optimization based
on its own prediction and sets its packet forwarding probability
according to the optimized predicted average utility.

Finally, we discuss how to handle the mobility of nodes.
We note that the scheme will work well in moderate node
mobility when the neighbors of each node do not change
very often. Under this condition, the long-term relationship
between nodes can be established by means of the repeated
game and reputation announcement as described in Section
III. As a result, the cooperation can be learned and enforced.

Obviously, the long-term relationship may be hard to estab-
lish in the case where there is a node that deviates in one part
of the network, moves quickly to the other part of the network,
deviates again and so on so forth. In this case, there are two
possible solutions. First, when the node moves to a new place,
in order for the node to transmit, some background check is
necessary. This can be done in two ways: first, if the nearby
nodes can share the announcement, then the neighbors of the

TABLE III

SELF-LEARNING REPEATED-GAME ALGORITHM WITH UTILITY

PREDICTION

Initialization: t = 0
α

(i),t
j = α0, ∀i, j. Choose small incrementζ.

Iteration: t = 1, 2, · · ·
For each nodej = 1, · · · , N

Calculate

[∇(1)
j , · · · ,∇(N)

j ] =
[

∂
PN

n=1 U
(n)
j

N∂α̂
(1),t
j

, · · · ,
∂
PN

n=1 U
(n)
j

N∂α̂
(N),t
j

]

Calculateα
(i),t
j = α

(i),t−1
j + ζ∇(i)

j

Setα(i),t
j = max(min(α(i),t

j , 1), αmin).
End when:

No improvement and returnα(i)
j = α

(i),t
j , ∀i, j.

Keep monitoring the deviation, and go to
punishment scheme whenever there is a deviation.

node can obtain the announcement from the node’s previous
neighbors. And the new neighbors will know the reputation
of this new node. The analogy of this case in the real life is
when someone applies for a new job, the new employer always
asks for the references from the old employers. And both
employers can work harmoniously in a distributed manner.
In the literature, the above idea is implemented in the trust
establishment for ad hoc network such as [16].

The other solution is by increasing the sampling of the
learning algorithm. As long as the node mobility does not
change the relationship between neighboring nodes drastically,
the effect of mobility to the learning algorithm can be lever-
aged by putting more frequent learning period in the slotted
transmission as in Figure 1. This case is similar to tracking
non-stationary channel; the faster the channel changes the
more frequent the training sequence transmission is required.

V. SIMULATION RESULTS

To investigate effectiveness of our proposed framework, we
perform simulations with the following settings. We generate
two networks with25 nodes: the ring-25 network and random-
25 network. The ring-25 network consists of25 nodes that
are arranged in a circle with radius1000m. The random-25
network consists of25 nodes that are uniformly distributed in
the area of1000m×1000m. We define the maximum distance
dmax, such that two nodes are connected if the distance
between two nodes is less thandmax. We select the maximum
distance between two nodes to ensure connectivity of the
whole network. In the ring-N network, the angle separation
between two neighboring nodes is2π

N . And, the distance
between two neighboring nodes is2r sin( 2π

2N ), wherer is the
radius of the circle. In particular, the maximum distance for
the ring-25 network can be calculated as2000 sin

(
2π
50

)
m =

250.7m. In the random-25 network, the maximum distance
between two nodes is350m to ensure connectivity of the
whole network with a high probability.

We also define the flows as source-destination (SD) pairs.
We assume that the routing decision has been made before
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performing packet forwarding optimization. The shortest path
routing is employed in the simulations. In the random-25
network, we vary the number of SD pairs. When there are
traffic flows from all nodes to all other nodes, we called this
traffic as dense flow that implies that each node has packets
destined to the rest of nodes in the network. Obviously, the
dense flow hasN × (N −1) SD pairs in theN -node network.
When the total flow is less than the dense flow, the SD pairs
are determined randomly. In the ring-25 network, the number
of SD pairs is defined in the following way. The(K ·N) SD
pairs are obtained when every nodei sends packets to nodes
({mod(i + 2, 25), · · · , mod(i + K + 1, 25)}. For instance,25
SD pairs are obtained when every nodei transmits packets
to nodemod(i + 2, 25), 50 SD pairs are obtained when every
nodei sends packets to nodes{mod(i+2, 25),mod(i+3, 25)},
etc. The rest of the simulation parameters are given as follows,
transmission rate of sourcei as µi = 1, ∀i, transmission
constantK = 1, distant attenuation coefficientγ = 4. We
compare three learning algorithms according to the informa-
tion availability. The parameters for the learning algorithms
are listed as followsβ = 0.05, ξ = 0.001, η = 1.0, and
ζ = 0.05. The minimum forwarding probability is set to be
αmin = 0.1 and the maximum forwarding probability is set
to be αmax = 1. Finally, all algorithms are initiated with
α0 = 0.5,∀i. We note that in the following simulations, we
employ the average efficiency per node defined in (25) as our
performance metric.

Figure 5(a) shows the average efficiency of the deviation
node in the ring-25 network when the number of source-
destination is75 with the discounted factorδ = 0.9. In the
figure, node3 deviates at time instant10. This deviation causes
the stage efficiencies of node1, 2 and25 become lower. From
the route, node1, node 2 and node25 suspect that nodes
in {2, 3, 4}, {3, 4, 5} and{1, 2, 3} are deviating, respectively.
The nodes in the network know that node3 is consistent to
be incriminated for deviation and start the punishment stage
(Here, the punishment period is set to3). The punishment
scheme results in lower average stage efficiency as described
in Figure 5(a). From the figure, the average efficiency without
deviation is better than the average efficiency with deviation.
It is clear that it is better off for node3 to conform to the
previously agreed cooperation point. As the result, no node
wants to deviate, since the deviation results in worse average
efficiency. Similarly, Figure 5(b) shows the average utilities of
deviating node and other nodes in the random network with
16 nodes with the discounted factor0.9. At time instant11,
node10 in the network deviates. At the next time instant, all
related nodes that detect deviation exchange the list of the
incriminated nodes. The consistent incriminated node (in this
case node10) is punished for a certain period of time (in this
figure,8 period of time). From the figure, it is clear that node
10 will have higher average efficiency when it conforms. So
from Figure 5(a) and Figure 5(b), the proposed repeated game
can enforce the cooperation among autonomous greedy nodes.

Figure 6 and Figure 7 show the learning curves for the
proposed self-learning repeated-game scheme for the ring-
25 network and the random-25 network, respectively. In the
figures, we compare the optimal solution, learning with perfect
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Fig. 5. Punishment of repeated game in the ring network and the random
network

observability, learning with flooding, and learning with utility
prediction. In Figure 6, all of the algorithms achieve the
system optimal value when the source-destination pairs are
100, 200, and 275. The learning with perfect observability
and the learning with utility prediction have approximately the
same convergence speed. The learning with flooding converges
slower, since the learning with flooding does the trial-and-
error to find the better forwarding probabilities. This unguided
optimization although requires minimal information has the
inferior convergence speed. Figure 7 shows the learning curves
of the proposed algorithms for random-25 network with differ-
ent source-destination pairs. One can observe that the learning
with utility prediction achieves very close efficiency per node
compared to the optimal solution and learning with perfect
observation. In contrast, the learning with flooding achieves
inferior efficiency per node.

Figure 8(a) shows the learned average efficiency per node
for the various algorithms with different traffic flows in the
ring-25 network. The efficiency becomes lower as the number
of source-destination pairs become larger. This can be ex-
plained as follows. Because of the symmetric property of the
utility functions, the local optimal forwarding probabilities for
all nodes are the same. It can be easily shown that the local
optimal forwarding probabilities in the ring-25 network is1
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for all nodes2. Therefore, the larger the number of source-
destination pairs, the more packets a node needs to forward
and the higher value of the denominator of the stage utility
function in (7). As the result, the average efficiency per node
decreases as the number of source-destination increases. Using
simple calculation, it can be shown that the average efficiency
per node decays is Nsd/N

(Nsd/N+0.5∗(Nsd/N+1)∗(Nsd/N) , whereNsd

is the number of source-destination pairs. In Figure 8(a), all
learning algorithms perform similarly for the different numbers
of source-destination pairs.

Figure 8(b) shows the achievable efficiency per node after
the learning algorithms converge for different numbers of
source-destination pairs in the random-25 network. We observe
that the learning with utility prediction achieves very close
efficiency compared to the learning with perfect observation
and the optimal solution. The learning with flooding achieves
lower efficiency per node, but still achieves much better

2This is not true in the random network in general.
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Fig. 8. Average efficiency per node for different traffic loads in the ring
network and the random network

efficiency compared to the Nash Equilibrium. In average, the
learning with utility prediction achieves around99.2% of the
efficiency achieved by the optimal solution. In contrast, the
learning with flooding achieves more than73.18% of the
optimality.

Comparing Figure 8(a) and 8(b), we can see that the
learning with flooding performs well in the ring-25 network
but inferior in the random-25 network. The reason for this
phenomenon is that in the ring-25 network, the utilities of all
nodes are symmetric and optimizing the system criterion (25)
results in the same average efficiency in each node. Since the
learning with flooding tries to increase its node’s efficiency
by changing its own forwarding probability synchronously,
this iteration will finally reach the point where all nodes’
efficiencies are the same due to the symmetric structure of
the network. This solution is coincidentally the same as the
solution of the system criterion (25) optimization. In contrast
to the ring-25 network, the utility functions for each node are
highly asymmetric in the random-25 network. In this case, the
node that firstly reaches a better solution will not change its
forwarding probability, even though changing its forwarding
probability results in slightly lower efficiency in that particular
node but increases the other nodes’ efficiencies significantly.
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TABLE IV

NORMALIZED AVERAGE EFFICIENCY PER NODE FOR DIFFERENT NODES IN THE RANDOM NETWORK WITH DENSE TRAFFIC

Number of nodes 9 16 25 36 49 64 81

Average efficiency per node 0.7438 0.7581 0.5930 0.5574 0.5629 0.5316 0.4916
(Optimal solution)

Normalized learning 99.63% 99.91% 99.39% 100% 100% 100% 99.94%
perfect observability
Normalized learning 84.79% 71.45% 72.81% 65.36% 68.56% 58.21% 59.40%

using flooding
Normalized learning 100% 97.91% 98.98% 99.27% 96.59% 99.88% 96.70%

using utility prediction

Due to this greedy and unguided optimization, the learning
with flooding achieves inferior average efficiency per node,
compared to the learning using utility prediction which obtains
information from routing information and performs better
learning.

Next, we investigate the performances of the learning al-
gorithms in the dense flow with different number of nodes in
the random network. Table IV shows the average efficiency
per node (25) for different sizes of the network normalized
with the average efficiency obtained by the optimal solution.
We can observe that as the number of nodes increases, the
optimal average efficiency per node decreases. This is because
the total power required for self-transmission and packet-
forwarding increases much faster compared to the successful
self-transmission power, as the number of nodes increases.
Therefore, the stage utility for each node (7) decreases as
the number of nodes increases in the dense flow. As the
result, the average efficiency per node decreases as the node
increases. We also observe that the learning with utility
prediction achieves96% ∼ 100% of the average efficiency
per node achieved by the optimal solution for various sizes
of the network. On the other hand, the learning with flooding
achieves60% ∼ 85% of the average efficiency obtained by
the optimal solution. We note that the learning using flooding
achieves lower efficiency as the number of nodes is larger, this
is due to the unguided optimization. As the number of nodes
becomes larger, it is more probable to get into the situation
where only small portion of nodes have high efficiency but the
rest have very low efficiencies. In contrast, the performance of
learning using utility prediction slightly decreases but achieves
a very close performance compared to the learning with perfect
observability for various sizes of the network as shown in
Table IV. The decrease is because as the number of nodes
becomes larger, the utility prediction becomes less accurate.

VI. CONCLUSIONS

In this paper, we propose a distributed mechanism for
enforcing and learning the cooperation points among selfish
nodes in wireless networks. Our proposed scheme consists
of a repeated-game framework to enforce cooperation and
learning algorithms to search for better cooperation points.
From the analysis and simulations, we show that our proposed
framework is very effective to enforce cooperation among
greedy/selfish nodes. In practice, selfish nodes with local infor-
mation may not know how to cooperate even though they are
willing to do so. We propose learning algorithms to guide the

distributed nodes to find better cooperating points. Depending
on the information structures, the proposed learning algorithm
by flooding and with utility prediction achieve60% ∼ 85%
and 96% ∼ 100% of the efficiency that is obtained by
the optimal solution with global information and centralized
optimization.
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